Optical transform methods
T.R.Welberry and John M.Thornas

The diffraction pattern of a crystal or of any known structure may by readily
calculated by using fast digital computers. However, it is often scientifically
more rewarding, especially for exploring unknown structures or for teaching
the subtleties of structural chemistry, to use the simple methods of optical
transforms. This article explains why.

Optical transform methods' are used predominantly in X-ray crystallography and
increasingly in electron microscopy. In X-ray studies the X-ray diffraction pattern from
a given material is modelled by using the diffraction of visible light from a suitably

scaled pictorial representation of the distribution of atoms and molecules in the
original material. In electron microscopy, then high resolution image is used as the
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‘object’ on an optical bench and visible light is diffracted by it to yield a pattern that
aids the interpretation of the original micrograth.«

The idea of using optical analogues to aid in the interpretation of X-ray diffraction
patterns originated with Sir Lawrence Bragg around 1938, and the method has
developed considerably since then. Before the advent of digital computers the
calculation of the diffraction pattern of even a fairly simple crystal structure was an
enormous task and so the use of optical diffraction from a model had obvious
benefits-particularly for testing trial structures. Once computers were available it
became a trivial exercise to calculate the diffraction pattern of an ordered crystal
structure for comparison with observed measurements and the optical method began
to fall into disuse. On the other hand, for disordered structures, amorphous materials
and even liquids the transform method is still used, even though the most complex
diffraction patterns can in principle be calculated quite readily with modern
computers.

Why should optical transforms remain popular in an age of computer domination?
One reason is the method's great power of visual presentation in teaching, in
stimulating thought, and in confirming or aiding the development of intuition-which
still plays a major role in solving the more compiex probiems in diffraction. The
optical method provides us with an immediate visual check both on the reciprocal
space and on real space distributions, and their relative scale an orientation.
Moreover, the whole diffraction pattern is obtained immediately and any unexpected
features are clearly revealed-features that would perhaps have passed quite
undetected in a calculation in which the scale, as well as the required region of the
pattern to be calculated and the resolution, must be predetermined.

In recent years methods have been developed to produce routine optical diffraction
masks (or screens) for use as aids in interpreting X-ray or electron diffraction
patterns.”” We can now produce, rapidly and easily, an optical diffraction mask which
is a good representation of almost any real diffraction problem encountered with X-
rays or electrons. Although the diffraction patterns obtained may by only qualitatively
or at best semiquantitatively in agreement with the real patterns, they provide a
useful starting point for interpreting the observations. Examples of problems that we
have studies with the aid of such diffraction masks are:



« short range order in molecular crystals;

» size effect distortions in alloys;

« thermal diffuse scattering in minerals;

« small angle scattering in microemulsions;

« fluctuations of local order in liquids.**
In high resolution electron microscopy, selected regions of the images have been
used as the mask,” and the resulting diffraction of a laser beam was used to
determine the nature of the crystallographic phase-eg 50® diameter islands of silicon
that have crystallized within an annealed thin film of silicon suboxide.
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black dot of one of a small gig 1 Schematic diagram of the diffractometer used to obtain
number of possible optical diffraction patterns.(a)The equipment used to obtain high
diameters, eg 50um, is quality patterns with diffraction masks.(b)A simple arrangement
usually written at selected suitable for demonstrations in a lecture theatre with smaller
. . . diffraction masks of ca 1cm x 1cm, made by photographically
pixel points. In a typical case

reducing those used in(a).
ca 5 x 10° such dots may by
plotted to form the mode! object.

In some cases the computing time required to generate the coordinates to be plotted
may by only a few seconds on a VAX computer, while for others many hours may by
required. Simple point distributions take only a short time, whereas ones for which
long iterative procedures are required-such as Monte Carlo or molecular dynamic
simulations-are very slow. The actual plotting time may take up to an hour,
depending on the complexity of the mask. ‘



Diffraction patterns are readily
obtained by using a laser
diffractometer (see Fig.1a). The
beam from a small He-Ne laser
is passed through a beam
expander which consists of a
microscope objective, then a
small (10um pinhole) aperture
which ‘acts as a spatial filter.
The pinhole is at the back focal
plane of a collimating lens, L,
and is imaged at the focal
plane, F of the objective lens,
L.

The diffraction pattern of mask
M, placed in the paraliel portion
of the beam, appears at F,
where it may by photographed
directly by using a camera body
without a lens (typically on
35mm or 120 roll film).
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If we apply Bragg's law of
diffraction, A=2dsin®, to the
optical experiment we find that
for a wavelength 2=0.632um
and plotting grid spacing
d=12.5u, the first  order
diffraction peaks will occur at a
diffraction  angle  0=1.448°,
which ~ corresponds to a
distance from the direct beam
of 55.6mm in the film plane for
our objective lens of 2.2m focal
length. We frequently use a
scale of one 12.5um unit to
represent 0.1® (0.01nm). This
means that the region of
diffraction space, corresponding
to the maximum that can be
observed with, say, CuKX-
radiation (sin6,,=A2=0.77®) in
a real experiment, falls Fig2 Optical diffraction patterns illustrating the principles of X-

conveniently within a 35mm ray powder diffraction.(a)Square lattice;(b)rectangular
frame in the optical analogue lattice;(c)hexagonal lattice;(d)liquidlike  distribution;(e)shows
exper; the relation to a real powder photograph-compare with the
periment. . e .
section shown in(a);(f)shows the diffractogram.
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The requirements for demonstration in a lecture theatre are rather different! Here the
aim is to produce as large and as large and as visible a diffraction pattern as possible
with relatively simple apparatus. The main requirements may by satisfied by reducing
the physical size of the diffraction mask by a factor of about 10. Then a laser beam of
only about 1cm diameter, easily achieved with small inexpensive lenses, may by



used. With this reduction of scale of the real space representation the diffraction
angles are correspondingly larger, and the resulting pattern can by projected onto a
distant screen to good effect. Figure 1bshows a suitable arrangement. A grid of 20
lines per millimetre gives diffraction peaks with a spacing of about 12cm on a screen
at a distance of 10m. For the examples in this article we have used the patterns
obtained from the original masks, which were approximately 10cm x 10cm in size,
but for the demonstrations these were photographically reduced to about 1cm x 1cm.
For some examples, an effective diffraction pattern may by obtained simply by
passing the laser beam directly through the reduced mask without any lenses. This is
an excellent demonstration for introducing the relationship between the optical and
the X-ray experiments, because students find it difficult to see the correspondence if
lenses are used in the optical experiment and not in the X-ray experiment.

emonstration examples =
There are several useiul
experiments that can by
demonstrated.

- 1.X-ray powder patterns. The
aim of this set of examples was
to show the type of scattering
pattern that is obtained when
an X-ray beam is directed onto
a polycrystalline sample. Each
mask consisted of 441 000
scattering points made up of
which contained enough
scattering points (a 21 x 21
array) for the diffraction pattern
from any one crystallite to
display a reasonably good
single crystal pattern with sharp
Bragg peaks. The individual
crystallites were placed at
random within the desired area #
of the mask, and each was ,
given a different orientation.
The orientations could have
been chosen randomly, but to
obtain a reasonably smooth
scattered intensity distribution
with a relatively small total
number of points, they ware
chosen at equally spaced
intervals in the range O-m.
Figure 2 shows four different

examples. In Fig.2a the lattice rig 3 Shows the effectiveness of the optical diffraction pattern
is a simple square grid; in in picking out local order not easily seen by the eye in the real
Fig.2b it is rectangular with the space distribution of points. In Fourier space, however-ie in

unit cell edges a and b in the the optical transform-the latent order is
ration 1:1:3: and in Fig.2c it is apparent:(a)disordered;(b)and(c) have latent order.
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hexagonal. On the left we show an enlargement of a small portion of the basic grid
on which each example is based, then at a lower magnification we show a small
portion of the mask in which a number of crystallites with different orientations can by
observed. This is followed by the optical diffraction pattern of the whole mask,
showing the complete powder rings of diffraction. We have also expanded a small
strip of the pattern for the square lattice (Fig.2e) to emphasize the relationship of the
pattern to real X-ray powder photographs. A powder photograph is shown for
comparison in Fig.2f together with a diffractogram of the same sample. The pattern
for the square grid shows a simple progression of diffraction lines conforming to the
simple rule:
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where h and k are integers and a is the length of the unit cell edge. Note that (h*+k?)
may take values 1,2458,910,13,16,17,18,20 etc. The gaps in the progression
where 3,6 and 7,11 and 12, and 14 and 15 should by, are clearly visible. A much
more complex powder pattern containing more diffraction lines is obtained for the
rectangular lattice, for which the corresponding formula is,
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while for the hexagonal lattice fewer diffraction lines appear, at values of the
diffraction angle given by,
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To demonstrate the difference between these polycrystalline solids and an
amorphous material we also constructed a diffraction mask with a liquid-like structure
(Fig.2d). Although the average nearest neighbourdistance is the same as for the
hexagonal lattice of Fig.2c, the range of order is very short. Each smali region of the
mask was in fact plotted from the coordinates obtained from a molecular dynamic
simulation of a sense liquid-a necessarily large computation even with a relatively
small number of atoms. The same set of coordinates was used many times with
different orientations to produce a mask containing a sufficiently large total number of
particles. The diffuse rings in the diffraction pattern of this example occur in positions
corresponding to the first three powder rings in Fig.2c.



2.Local order and disorder. Observation of the local order
and the more macroscopic disorder apparent in the
examples of Fig.2 leads naturally onto a discussion of
what exactly is meant by disorder, and Fig.3 illustrates
that the visual appearance of a distribution of points can
by misleading. Each of the three examples shown in Fig.3

appears to by sipmly a disordered collection of points. The ¥

sections illustrated are small representative regions of the
masks used to obtain the optical diffraction patterns, each
mask again containing ca 400 000 points. Of the three
distributions, however, only that in Fig.3a is totally
random. By random we mean that each point is placed on

the area of the diffraction mask quite independently of all

other points. In Fig.3b the points are all in pairs, so that
for every point that is visible a second point may by found
at a fixed distance away in the horizontal direction. Some
sample pairs of points have been identified by drawing the
connecting line - this is not easily detected by eye
because for any point the several closest neighbours do
not include the one to which it is paired. The pairing is,
however, very apparent in the diffraction pattern. The
spacing of the fringes is inversely proportional to the
length of the pairing vector. In Fig.3c similar pairs of

points have been placed randomly but now the orientation '*

of the connecting vector is also chosen randomly. The
pairs, some examples of which are shown, are now more

difficult to distinguish even on close scrutiny, but their :

presence is clearly evident in the diffraction pattern.

3.Disorder in molecular crystals. Molecular crystals
provide a wide range of examples of interesting and
instructive X-ray diffuse scattering, which can by modelled
well by the optical method. There are numerous instances
in which a type of static disorder occurs because the
molecule can fit into the crystal in one of two different
orientations without disturbing the overall repetitive
pattern. Figure 4 shows an example of such a crystal-2,3-
dichloro-6,7-dimethylanthracene.® Figure 4a shows a
drawing of the average crystal structure and it is clear that
in each molecular site a molecule can by rotated by 180°,
effectively  interchanging the ~methyl and chloro
substituents, with very little apparent change in the shape
presented to the surrounding molecules. For this example
there is so little difference in energy between the two
different orientations that these disorientations occur very
frequently in a crystal. Such mistakes can clearly by seen
in the small portion of a typical diffraction mask, which is
shown in Fig.4b (the complete mask contained ca 300
000 dots). In the mask the larger dots represent the
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Fig.4.Example of a disordered
molecular crystal, 2,3-dichloro-
8,7-dimethylanthracene:(a) - a
drawing of the crystal structure
assuming that all molecules
are in an ordered arrangement;
large circles represent chlorine
atoms .~ and small circles
carbon;(b) a smail portion of a
diffraction mask representing
the disordered structure in
which some molecules are
rotated by 180%(c) the real X-
ray . diffraction. pattern;(d) the
optical ~ diffraction - pattern
obtained from a model which
included both. the static
disorder and thermal
displacements.

chlorine positions and the smaller dots the carbon. The resulting disorder gives rise
to strong diffuse diffracted intensity called disorder differs scattering (DDS). In
addition, further thermal diffuse scattering (TDS) occurs as a result of the thermal



motion of the molecules. The optical diffraction pattern shown in Fig.4d includes both
of these effects and can by seen qualitatively to be in good agreement with the
observed X-ray pattern (Fig.4c). The DDS is observed as sets of diffuse bands
connecting the rows of sharp Bragg peaks, while the TDS is seen as rather broader
regions of scattering most evident in six stronger peaks near the periphery of the
pattern. The DDS bands of intensity occur normal to the directions in the crystal in
which short range order exists. The orientation of any one molecule is not completely
random, but is strongly influenced by the orientation of neighbouring molecules,
particularly those making end-to-end contact. The model also reproduces fairly well
the variation of the Bragg peak intensities.

4.Quasicrystals - fivefold symmetry. There has been much 5
interest recently in the topic of so-called quasicrystals.™ !

Quasiperiodic crystals (to give them their full name) are a
new class of aperiodic atomic structures which have
noncrystallographic  point  symmetries, but  which
nevertheless give diffraction patterns with sharp diffraction
peaks indicative of long range order. A number of binary
metallic alloy as well as other systems form phases
displaying such quasiperiodic properties.” A convenient
two dimensional example, suitable for demonstration, is
simple Penrose tiling (Fig.5a).®" In contrast to the *
conventional concept of a crystal structure, in which the
same basic unit is repeated by translational symmetry to
produce a perfectly periodic array, here two different tiles-
the so-called thin and fat rhombs-are packed together in a
perfectly prescribed but aperiodic pattern. To generate the
Penrose tiling pattern an iterative procedure is used which
does and hierarchical "subdivision of each rhomb. In
Fig.5a the heavy lines represent one stage of the
subsivision process for a small section of tiling. Each fat
and thin rhomb is then subdivided as indicated by the
lighter lines to form the next generation of the subdivision.
Once the tiling pattern has been generated it may by
decorated by positioning scattering points in a variety of
ways on each of the different rhombs in the same way as
a crystal structure is formed from a lattice of points. At
present, very little is known of the actual atomic
arrangements in real quasicrystals. Accordingly we show
an example in which scattering points are placed at the = § ‘
corners of each rhomb. A small portion of the diffrac_tion Fig.5 ('a)"' T'hé' ‘;enrose filing
mask, which contained a total of ca 10° scattering points, ,awern showing the fat and
is shown in Fig.5b, and the optical diffraction pattern is tin rhombs, and the fivefold
shown in Fig.5¢. It should by noted that although the tiling symmetry. (b) A smali region of
pattern has fivefold symmetry, the diffraction pattern has the diffraction mask. (c) The
tenfold symmetry because the diffraction process always ©Ptical diffraction pattern.
adds inversion symmetry to the real space symmetry.
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5.Diffraction from helices. As a final example we show the diffraction patterns of
some simple helices, which illustrate the characteristic patterns of many



macromolecules, eg helical polysaccharides (collagen), complex linear (gellan) and
branched (xanthan) polysaccharides, nucleic acids, fibrous macromolecular
assemblies (bobacco mosaic virus, bacteriophages etc)-and some membrane
structures that form two dimensional periodic arrays.” Because these molecules do
not form extensive regular crystals they are not generally amenable to conventional
crystallographic analysis. Nevertheless, diffraction has played an important role in
determining the structures of DNA and of a wide range of other linear bipolymers,
because specimens can by prepared in which the long axes of the molecules are
aporoximately parallel. The molecules sometimes further organize laterally into small
regions of three dimensional crystallinity, although the orientations of the crystallites
about their long axes are random.

In the examples shown in
Fig.6 each diffraction mask #3
consisted of 500 helical %
chains placed randomly &
within the frame of the #
mask. Each chain |
contained ca 900 scattering
points and each had the §
same  orientation, but, |
because the centres of |
mass were quite arbitrary, {
there was no correlation
between the phases of the
helix  in neighbouring
chains. Only two examples
are given; they show the N
effect of altering the pitch of
the helix. Many other
variations of the mask
could by generated to show
such effects as varying the
chain orientation, varying
the degree of allgnment of o T
neighbouring chains, F|g 6( ) and (b) Diffraction masks; (c) and (d) the corresponding
including a second helix to diffraction patterns. The only difference between (a) and (b) is the
! pitch of the helix.
form a double helix etc. In
each of the examples shown the X-shaped pattern of diffraction peaks characteristic
of a helical structure is easily discerned. There is also a resemblance of the
horizontal rows of peaks to an ordinary X-ray rotation photograph of a single crystal.

To drive home the message that an X-shaped diffraction pattern implies a helical
structure in real space, one need only place the coiled coil (helical) filament from a
domestic electric light bulb in the path of a weak Ke-Ne laser beam, such as that
used in a modern red laser pointer. The similarity between the resulting optical
diffraction and the X-ray pattern first recorded™ by Rosalind Franklin for DNA is
striking.



Optical transforms are currently used in a wide variety of structural contexts, as a
glance at the primary journals devoted to condensed matter and surfaces will reveal.
Apart from the illustrations given in this article, you may by interested to hear how
useful they have been in determining whether metallic organosols are crystalline, or
whether two dimensional adsorbed layers are ardered.? Optical transforms are
however, of great pedagogic value, and may by used to introduce the concepts of
packing and structure, and the architecture of crystals to a young audience
unacquainted with X-ray phenomena.

Dr Richard Welberry is senior fellow in the research school of chemistry, Australian
National University, GPO Box 4, Canberra City, ACT 2601, Australia; John
M.Thomas is Fullerian professor and director at the Davy-Faraday Research
Laboratory, The Royal Institution, 21 Albemarle Street, London W1X4BS.

. Many of the illustrations shown here were prepared for the Royal Institution Christmas Lectures 1987

given by J.M.T.
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